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Abstract. The connected dominating set plays an important role in ad hoc wireless network-
ing. Many constructions for approximating the minimum connected dominating set have
been proposed in the literature. In this paper, we propose a new one with Steiner tree, which
produces approximation solution within a factor of 6.8 from optimal. This approximation
algorithm can also be implemented distributedly.

1. Introduction

Wireless Sensor Network is widely applied in the healthcare industry, food
industry, and agriculture. The sensors in the network are incorporated
with integrated circuits to provide networking capability, so they are also
referred as smart sensors [14]. Wireless sensor network essentially is an
ad hoc wireless network which is composed of many sensors. It inher-
its the characteristics of ad hoc wireless networking, It is an autonomous
system consisting of mobile hosts connected by wireless links. There is
no central administration in the network and the network is hardware-
infrastructureless. In the wireless sensor network, each sensor is not only
a mobile host but also a router. In other words, the sensors are able to
forward the received data packages according to routing protocols. In this
paper, we assume that all sensors have the same power, that is, every sensor
can communicate with others within a unit distance. Under this assump-
tion, the topology of the sensor network can be formulated as a unit disk
graph.

A unit disk is a disk with radius one. A unit disk graph is associated with
a set of unit disks in the Euclidean plane. Each node is the center of a
unit disk. An edge exists between two nodes u and v if and only if |uv|�1
where |uv| is the Euclidean distance between u and v. This means that two
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nodes connecting with an edge if and only if u’s disk covers v and v’s disk
covers u.

Multicasting is to send messages to a group of receivers at the same
time. For example, when one sensor wants to send out topology update
information to a group of other sensors in the network, it will use mul-
ticasting. Multicasting reduces the network traffic by combining multiple
unicast data stream into one. The advancement of multicasting in the net-
work is driven by emerging applications, such as net meeting and video
conference. Currently, IP multicast group, where each multicast group uses
one IP address, and MBone, which is the multicast backbone, are employed
in the wired network. [7, 9]. Because of the different transmission media
between the wired network and wireless network, the multicasting proto-
cols in the wired network can not be applied in the wireless network.

One of efficient ways to support multicasting is to use virtual backbone
in wireless networks. A virtual backbone is a connected dominating set in
the network, that is, it is a subset of sensors such that they form a con-
nected sub-network and every sensor is either in the subset or adjacent to
a sensor in the subset.

Since multicasting can be performed first within virtual backbone and
then to others, it has been recommended to manage and updating the
topology of virtual backbone instead of the topology of the whole network,
which reduces both storage and message complexities.

Clearly, the smaller virtual backbone gives the better performance. How-
ever, computing the minimum connected dominating set is NP-hard even
in unit disk graphs. Therefore, many efforts [2, 15, 16, 18, 17, 1, 4] have
been made to design approximations or heuristics for the minimum con-
nected dominating set.

Guha and Khuller [10] showed a two-stage greedy (ln �+3)-approxima-
tion for the minimum connected dominating set in general graphs where
� is the maximum degree in the graph. They also gave a lower bound (ln
�+1) for any polynomial-time approximation for the minimum connected
dominating set provided NP �2polylog(n), Ruan et al. [13] found a one-stage
greedy (ln�+2)-approximation.

Cheng et al. [6] showed the existence of a polynomial-time approxima-
tion scheme for the minimum connected dominating set in unit disk graphs.
This means that theoretically, the performance ratio for polynomial-time
approximation can be as small as 1 + ε for any positive number ε. How-
ever, its running time grows rapidly as ε goes to 0 and hence is not worth
implementing in practice.

Among implemented approximation for the minimum connected
dominating set in unit disk graphs, the best previously known performance
ratio is 8 [17, 5] . In this paper, we will present a 6.8-approximation, which
can also be implemented distributedly.
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It is a popular idea to construct a connected dominating set in two steps:
In the first step a dominating set is constructed; in the second step, con-
nect the dominating set into a connected dominating set. Our main idea is
to employ the Steiner tree to do the job in the second step, A Steiner tree
for a given subset of nodes, called terminals, in a graph is a tree intercon-
necting all terminals such that every leaf is a terminal. Every node other
than terminals in the Steiner tree is called a Steiner node. Clearly, we prefer
the smaller number of Steiner nodes in order to obtain smaller connected
dominating set. Therefore, we will study the following Steiner tree problem
in the unit disk graphs.

Steiner Tree with Minimum Number of Steiner Nodes (ST-MSN): Given
a unit disk graph G and a subset P of nodes, compute a Steiner tree for P
with the minimum number of Steiner nodes.

The ST-MSN problem in unit disk graph has not been studied very
much in the literature. However, its geometric version in the Euclidean
plane has been studied extensively [11, 3, 8]. While some results in the
Euclidean plane can be extended to unit disk graph, some cannot be
done. For example, two points with distance 2 can be connected with
a Steiner point in the Euclidean plane. But, two nodes with distance
2 may not be able to be connected by a Steiner node since such a
node may not exist. Fortunately, a 3-approximation for ST-MSN can be
extended from the the Euclidean plane to unit disk graphs with a quite
different proof, which becomes a fundamental part in our approximation
algorithm.

2. Approximation with Steiner Trees

Our algorithm consists of two steps. At the first step, we construct a
maximal independent set. It is well known that every maximal indepen-
dent set is also a dominating set. The following is a recent result in (We-
iliWu et al., submitted) about relation between the size of the maximal
independent set and the minimum connected dominating set in unit disk
graphs.

LEMMA 1. In any unit disk graph, the size of every maximal independent
set is upperbounded by 3.8opt + 1.2 where opt is the size of minimum con-
nected dominating set.

Especially, Wan [17] and Cheng [5] constructed maximal independent set
having the following property.
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LEMMA 2. Every subset of the maximal independent set is two hops away
from its complement.

We assume throughout this paper that the maximal independent set we
talk about satisfies Lemma 2.

At the second step, we employ a 3-approximation for the ST-MSN to
interconnect the maximal independent set. Note that the size of optimal
solution for the ST-MSN cannot exceed the size of the minimum connected
dominating set since the latter can also interconnect the maximal indepen-
dent set. Therefore, we spend at most 3opt Steiner nodes in the second
step, By Lemma 1, the resulting connected dominating set would have size
bounded by 6.8opt .

THEOREM 1. The two step algorithm with Steiner tree produces 6.8-
approximation for the minimum connected dominating set.

Now, let us describe algorithm in the second step.

ALGORITHM A. Input a maximal independent set and mark all its
nodes in black and others in grey. In the following, we will change some
grey nodes to black in certain rules. A black component is a connected com-
ponent of the subgraph induced by black nodes.

Stage 1. while there exists a grey node adjacent to at least three
black components do
change its color from grey to black;

end-while;
Stage 2. while there exists a grey node adjacent to at least two

black components do
change its color from grey to black;

end-while;
return all black nodes.

We know that Theorem 1 follows immediately from the following.

THEOREM 2. Let T∗ be art optimal tree for the ST-MSN problem on an
input maximal independent set. Then the number of grey nodes changed their
color to black is at most . C(T∗), the number of Steiner nodes in T∗.

The remainder of this section is contributed to the proof of Theorem 2.
First, we show some properties of optimal trees for the ST-MSN problem.

Since a unit disk graph is placed in the Euclidean plane, its edges have
Euclidean lengths. An optimal solution for the ST-MSN is said to be short-
est if its total edge-length reaches the minimum among all optimal solution.
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Any shortest optimal solution T for the ST-MSN in the unit disk graph
must have the following properties.

(a1) No two edges cross each other.
(a2) Two edges meet at a node with an angle of at least 60◦.
(a3) If two edges meet with an angle of exactly 60◦, then they have the

same length.

Indeed, if anyone of the above three condition does not hold, then we can
easily to find another optimal tree with shorter length.

Note that if a Steiner tree has a terminal with degree more than one,
then we can decompose it into smaller trees. Resulting subtrees from
decomposition at all terminals with degree more than one are called full
components.

LEMMA 3. There exists an optimal tree for the ST-MSN on maximal inde-
pendent set with the following properties:

(b1) Each Steiner node having degree at most five, and
(b2) Every full component contains either only one Steiner node of degree

two or no Steiner node of degree two.

Proof. First, we show that actually, there exists a shortest optimal tree for
the ST-MSN problem such that every node has degree at most five. In fact,
consider a shortest optimal tree T for the ST-MSN problem. By (a2) , every
node has degree at most six. Suppose T has a node u with degree exactly six.
By (a2), every angle at u equals 60◦. By (a3), all edges incident to u have the
equal length. Consider two adjacent nodes v,w of u such that ∠vuw = 60◦.
Replacing edge vu by vw results in still a shortest optimal solution. Now,
the degree of u is reduced. But, the degree of v is increased. Can the degree
of v still be at most five? We next show that the answer is yes.

Consider any node v with degree d. We claim that if v is adjacent to k node
with degree six, then d �6−2k. In fact, suppose u with degree six is adjacent
to v. Then u has two edges uw and ux such that ∠wuv =∠vux = 60◦ and
|uv| = |uw| = |ux|. Thus, |vw| = |uw| and |vx| = |ux|. Replacing uw and ux

by vw and vx results in still a shortest optimal tree for ST-MSN. But, v gets
two more edges. For all nodes with degree six and adjacent to v, perform
the same operation. We will obtain a shortest optimal tree for ST-MSN such
that v has degree d +2k. Hence, d +2k �6.

This claim guarantees that moving only one edge from u with degree
six to its adjacent node v would still keep v to have degree at most four,
Therefore, there exists an optimal tree T having all nodes with degree at
most five.
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Suppose T has a full component containing both Steiner node with
degree two and Steiner node with degree more than two. Removal of
a Steiner node with degree two breaks T into two part. By Lemma 2,
we can add a Steiner node between two terminals to reconnect the two
part. Resulting tree is still optimal, but the number of full components is
increased.

Moreover, an optimal tree cannot have a full component containing only
Steiner nodes with degree two and more than one Steiner nodes with
degree two. Indeed, if such case Occurs, then removal of all Steiner nodes
in the full component breaks the tree into two connected parts. By Lemma
2, we need to add only one Steiner node to reconnect the two parts, con-
tradicting the optimality.

Therefore, among optimal trees of nodes with degree at most five, the
one with maximum number of full components must have properties (b1)
and (b2).

A Steiner tree is called a steinerized spanning tree if all Steiner nodes
have degree two. A steinerized spanning tree is minimum if the number of
Steiner nodes reaches the minimum. By Lemma 2, in a minimum steiner-
ized spanning tree, each Steiner node is between two terminals. If the num-
ber of terminals is n, then the number of Steiner nodes in any minimum
steinerized spanning tree is n−1.

Now, we are ready to prove Theorem 2.

Proof of Theorem 2. Let us add a tree TA in Algorithm A. Initially, TA

is an empty tree with all black nodes. When a grey node v becomes black,
we add to TA a star with center v and edges connecting adjacent black con-
nected components.

Denote by T (i) the TA at the beginning of Step i in the algorithm
A. Suppose T (2) − T (1) contains k3 3-stars, k4 4-stars, and k5 5-stars.
Then

C(TA)�C(T )−2k3 −3k4 −4k5

where T can be any minimum steinerized spanning tree on all terminals,
especially, can be the one constructed as follows. Let T ∗ be an optimal tree
for ST-MSN with properties (b1) and (b2). Suppose T ∗ has g full com-
ponents T1, T2, . . . , Tg that each contains a Steiner node with degree more
than two. For every Tj , j =1,2, . . . , g we remove an edge between a termi-
nal and a Steiner node. If the tree is broken into two parts, then we add a
Steiner node to reconnect them by Lemma 2, Let si denote the number of
Steiner nodes with degree i in Tj . Then the number of terminals in Tj is

3s5 +2s4 + s3 +2.
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Note that removal of the last edge between a terminal and a Steiner
node would not break the tree into two parts. Therefore, this operation
would add 3s5 +2s4 + s3 +1 Steiner nodes to replace Tj . If s4 >0 or s3 >0,
then 3s5 + 2s4 + s3 � 3(s5 + s4 + s3) = 3C(Tj ) where C(Tj ) is the number of
Steiner nodes in Tj . Therefore, if T ∗ has h full components each contain-
ing only Steiner nodes with degree five, then

C(T )�3C(T ∗)+h.

Hence,

C(TA)�3C(T ∗)+h−k3 −2k4 −3k5.

It suffices to show h�k3 +2k4 +3k5.

Let n be the number of terminals. Note that T (1) is the empty graph on
all terminals. Hence, T (2) has q(= n − 2k3 − 3k4 − 4k5) connected compo-
nents CI ,C2, . . . ,Cq . Now, we construct a graph H in the following ways:
Initially, H is the empty graph on all terminals. Let T1, T2, . . . , Th be the h

full components of T ∗; each contains only Steiner nodes with degree five.
If Tj , j =1,2, . . . , h, has only one Steiner node, then this Steiner node con-
nects to five terminals which must lie in at most two C ′

is. Hence, among
them there are three pairs of terminals; each pair lie in the same Ci . Con-
nect the three pairs into three edges and put them into H . If Tj has at
least two Steiner nodes, then there must exist at least two Steiner nodes
each connecting to four terminals. We can also find three pairs of termi-
nals among them such that each pair lies in the same Ci . Connect the three
pairs into three edges and put them into H . An important observation is
that H cannot contain a cycle because, if it does, so does T ∗, a contradic-
tion. Therefore, H has exactly n − 3h connected components. Since every
connected component of H is contained by a Ci , we have n− 2k3 − 3k4 −
4k5 �n−3h. Therefore, h� (2k3 +3k4 +4k5)/3�k3 +2k4 +3k5.

3. Distributed Implementation

There already exist several distributed algorithms for computing a maximal
independent set in the literature [17, 5]. Therefore, we only describe a dis-
tributed implementation of Algorithm A.

Each black node carries a z-value which is an identification for black
component, that is, all black nodes with the same z-value form a black
component. Initially, the z-value of each black node equals its ID.

Grey nodes are ranked based on two values. The first one is y-value
which is the number of black components adjacent to it. The second one
is its ID. The node with larger y-value is ranked higher. If two grey nodes
with the same y-value, then the one with smaller ID is ranked higher.
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A grey node u is a competitor of another grey node v if u and v are
either adjacent each other or adjacent to a same black component. A grey
node u is going to change its color to black if and only if u is ranked
higher than every competitor of u.

Every grey node keeps two lists, a black list and a competitor list.
The black list contains all adjacent black nodes with their z-values, which
enable the grey node to compute its y-value.

The competitor list contains all its competitors and their black lists so
that each grey node can also compute the y-value of every competitor of
it, which enable the grey node to make a decision on whether it should
change color nor not.

When a grey node u changes its color to black, all its adjacent black
components are connected into one and hence their z-value should be
updated to the same one, say the smallest one among them. Meanwhile,
all competitors of u become competitors of every competitor of u. There-
fore, the competitor list of each competitor of u should also be updated.
So, after u changed its color, u would send an UPDATE(u) message to all
its neighbors. The message contains u’ ID and its two lists.

When a black node v receives UPDATE(u) message, it will update z,
send out a COMPLETE(u) and pass UPDATE(u) to its neighbors other
than nodes which already sent to v UPDATE(u) or COMPLETE(u).

When a grey node receives UPDATE(u), it updates both black and com-
petitor lists and sends out COMPLETE(u) to its neighbors.
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